ISRAEL JOURNAL OF MATHEMATICS 110 (1999), 333-340

ON DISCRETE SUBGROUPS CONTAINING A
LATTICE IN A HOROSPHERICAL SUBGROUP

BY

Hee On*

Mathematics Department, Oklahoma State University
Stillwater, OK 74078, USA
e-mail: heeoh@math.okstate.edu

ABSTRACT

We showed in [Oh] that for a simple real Lie group G with real rank at
least 2, if a discrete subgroup I' of G contains lattices in two opposite
horospherical subgroups, then I' must be a non-uniform arithmetic lattice
in G, under some additional assumptions on the horospherical subgroups.
Somewhat surprisingly, a similar result is true even if we only assume that
I’ contains a lattice in one horospherical subgroup, provided I' is Zariski
dense in G.

1. Introduction

Let G be a connected semisimple algebraic R-group. A unipotent subgroup U of
G is called a horospherical R-subgroup if U is the unipotent radical of some
proper parabolic R-subgroup of G.

The main theorem in this paper is as follows:

1.1. THEOREM: Let G be a connected absolutely simple R-split algebraic group
with rank at least 2. Suppose that G is not of type A;. Let I' be a discrete
Zariski dense subgroup of G(R). Then T is a non-uniform arithmetic lattice in
G(R) if and only if there exists a horospherical R-subgroup U of G such that
I' 0 U is Zariski dense in U.

1.2. COROLLARY: Let G be asin Theorem 1.1 and U a horospherical R-subgroup
of G.
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(1) Let X be any subset of U(R) such that the subgroup generated by the
elements of X is Zariski dense in U.
(2) Let Y be any subset of G(R) such that the subgroup T'xyy generated by
the elements of X UY is Zariski dense.
Then either T xyy is a non-uniform arithmetic lattice in G(R) or I'xyy is not
discrete.

The proof of Theorem 1.1 is based on some results obtained in [Oh], which we
will recall in the following.

Two parabolic subgroups are called opposite if their intersection is a common
Levi subgroup in both of them. Two horospherical subgroups are called opposite
if they are the unipotent radicals of opposite parabolic subgroups.

1.3. THEOREM (cf. [Oh, Theorem 0.2]): Let G be a connected absolutely sim-
ple R-algebraic group with real rank at least 2 and Uy, Uy a pair of opposite
horospherical R-subgroups of G. Let Fy and F; be lattices in U;(R) and Ua(R),
respectively. Suppose that G is split over R and that if G is of type A;, then
U, is not the unipotent radical of a Borel subgroup. Then Fy and F, generate a
discrete subgroup if and only if there exists a Q-form of G with respect to which
U, and U, are defined over Q and F; C U;(Z) for each i = 1,2. Furthermore, the
discrete subgroup generated by Fy and F; is a subgroup of finite index in G(Z).

In {Oh, Theorem 0.2], we proved that if the subgroups F and F5 as in the state-
ment of Theorem 1.3 generate a discrete subgroup, then there exists a Q-form of
G such that the subgroup I'r, ,r, generated by F; and F; is commensurable to the
subgroup G(Z). We deduce Theorem 1.3 from this theorem; since G is absolutely
simple and hence the center of G is trivial, we can assume that G C SLy(C) by
considering the adjoint representation of G. Since I'r, r, is an arithmetic sub-
group, it is not difficult to see that there exists a I'm p,-invariant lattice L in
Q" (cf. [P-R, Proposition 4.2]); hence I'r, r, C GL = {g € G| g(L) C L}. Now
by applying the automorphism of SLx(C) that changes the standard basis to a
basis of L, we can change the Z-form of G so that G(Z) = G~, proving Theorem
1.3.

The following corollary follows from the above Theorem 1.3 and Theorem 7.1.1
in [Mal.

1.4. COROLLARY: Let G be a connected absolutely simple R-split algebraic
group with rank at least 2 and I" a discrete subgroup of G(R). Suppose that G
is not of type As. Then T is a non-uniform lattice in G(R) if and only if there
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exists a pair Uy, Uy of opposite horospherical R-subgroups of G such that T' N U;
is Zariski dense in U; for each i = 1,2.

Using Corollary 1.4, Theorem 1.1 is then a consequence of the following
proposition.

1.5. PROPOSITION: Let G be a connected semisimple R-algebraic group and I’
a discrete Zariski dense subgroup of G(R). Suppose that there exists a horo-
spherical R-subgroup U of G such that I N U is Zariski dense in U. Then there
exists a pair Uy, Uy of opposite horospherical R-subgroups of G such that U C U;
and I' N U; is Zariski dense in U; for each i =1, 2.

For simplicity, Theorem 1.3 is stated here only for R-split groups but we proved
it in much greater generality (see [Oh, Theorem 0.3]). All the above theorems
are valid for all situations in which Theorem 0.3 in [Oh] holds.

Remark: Theorem 1.3 was conjectured by G. Margulis in greater generality
(see [Ohl] for the full statement of the conjecture).

2. Unipotent subgroups of I’

2.1. Definition: Let H be a locally compact topological group, and D and
M closed subgroups of H. We say that D is M-proper if the natural map
D/(DN M) — H/M is proper, and M-compact if the factor space D/(D N M)
is compact.

2.2. LEMMA |[Ma, Lemma 2.1.4]: If M is a discrete subgroup of H, D; is
M-proper and D, is M-compact, then D1 N Dy is M-compact.

2.3. Let G be a connected semisimple algebraic R-group. For a subgroup F' of
G(R), we denote by N(F) the normalizer of F in G, by [F, F] the commutator
subgroup of F', and by S(F) the subgroup [N(F), N(F)] N G(R). The notation
F denotes the Zariski closure of F.

The following theorem in [Ma)], which was originally stated only for the case
where I is a lattice, holds for arbitrary discrete subgroups, as we can see from
the proof given in [Ma).

THEOREM [Ma, Lemma 5.2.2]: Let I' be a discrete subgroup of G(R) and F a
unipotent subgroup of I' such that F NT = F. Then S(F) is T'-proper.

2.4. COROLLARY: Let G be a connected semisimple algebraic R-group and T'
a discrete subgroup of G(R). Let Fy and F; be unipotent subgroups of I' such
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that F; NT = F; for eachi = 1,2. Then S(F,) N Fy is -compact. In particular,
S(Fy)nF,NT is a co-compact lattice in S(F1) N F.

Proof: By Theorem 2.3, S(F}) is I'-proper. Since a Zariski dense discrete sub-
group of a unipotent algebraic group is a co-compact lattice, F5 N G(R) is I'-
compact. Therefore, by Lemma 2.2, S(F1) N F;, is I-compact. ]

Note that the above corollary gives a way of obtaining a subgroup of F that
intersects I" as a lattice when S(Fy) N F; is non-trivial.

3. Horospherical subgroups and their intersections with I

3.1. Let G be a connected semisimple algebraic R-group, S a maximal R-split
torus of G and T a maximal R-torus containing S. Denote by g® = &(S,G)
(resp. ® = ®(T,G)) the set of roots of G with respect to S (resp. 7). We
choose compatible orderings on ® and g®, and let rA be the simple roots of g®
with respect to this ordering. Let j: ® — g® U {0} be the map induced by the
restriction to S.

For each b € (T, G), we denote by Us the unique one parameter root subgroup
associated with b. For § C grA, [0] denotes the Z-linear combinations of elements
of 8 which are roots in g®. A subset ¥ C g® is called closed if a,b € ¥ and
a+begr®dimply a+be V. If U is closed, then we denote by Gy the subgroup
generated by T and the subgroups U, a € j~}(¥U{0}), and by G}, the subgroup
generated by the subgroups Uy, a € j71(¥). If G§ is unipotent, then it will also
be denoted by Uy and the set ¥ in this case will be called unipotent.

For 6 C grA, we define the following closed subsets of g®:

7o = [f]Ur®t, mg~ =[0]UR®™, Bo=r®" 1[0, Bo =r® —[6]

For the sake of simplicity, we shall denote by Py, Ps~, Vg and V™~ the subgroups
Gryr Gry—» Up, and Ug, -, respectively.

We recall some well-known facts about parabolic subgroups and horospherical
subgroups (cf. [B-T]). Any parabolic (resp. horospherical) R-subgroup of G is
conjugate to Ps (resp. Vp) for some § C rA. Any pair of opposite parabolic
(resp. horospherical) R-subgroups is conjugate to the pair Py, Py~ (resp. Vg,
Vp ™) for some § C rA. Note that Pp is a minimal parabolic R-subgroup and Vp is
a maximal Korospherical R-subgroup. Any parabolic R-subgroup containing Fp
is of the form P, for some # C rA and any horospherical R-subgroup contained
in Vy is of the form Vj for some 6 C rA.
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Let gW = N(S)/C(S) be the relative Weyl group where C(S) denotes the
centralizer of S in G. For any w € gW and any subgroup H of G normalized by
C(S), we denote by wHw™! the subgroup n,, Hn,' where n,, is a representative
of w in N(S). We fix wo € gW such that woVpwy ' = Vy - Then wy takes &+
into @~ and there exists an involution ¢ of ® such that wy(i(a)) = —a for all
a € ®. We call i the opposition involution of ® (cf. [B-T, 2.1]). We have that
wngwO_1 = Pi?&) and onowO_l = ‘/i(—9)' If i(9) = 8, then Py (resp. Vp) is called
reflexive and so are all the elements in the conjugacy class of Py (resp. Vp).
Note that a parabolic subgroup P is reflexive if and only if its conjugacy class
contains a parabolic subgroup opposite to P.

It is not difficult to see that the following lemma holds.

3.2. LEMMA: The followings are all equivalent.
(1) Vp is reﬂexwe,
(2) ¥(6) =

(3) Vp and onng are opposite;
)

(4

3.3. LEMMA [B-T, Proposition 3.22]: If ¢ and ¢ are two closed subsets of g®
and 1 is unipotent, then Uy NGy = Uy NGy = Uyng.

N(Ve) N onng is trivial.

3.4. LEMMA [B-T, Lemma 4.12]: Let G be a connected semisimple algebraic R-
group and Py, P, two parabolic subgroups of G. Then the set M of all elements
g € G such that P, and gP,g~" contain opposite minimal parabolic subgroups is
Zariski dense and open.

3.5. COROLLARY: Let G be a connected semisimple R-algebraic group and P a
reflexive parabolic R-subgroup of G. Then the set M of the elements g € G such
that P and gPg~! are opposite is Zariski dense and open.

Proof: This follows from Lemma 3.4 and Proposition 4.10 in [B-T], which says
that two conjugate parabolic subgroups are opposite if they contain opposite
minimal parabolic subgroups. |

3.6. PROPOSITION: Let G be a connected semisimple algebraic R-group, T' a
Zariski dense subgroup of G(R) and U a horospherical R-subgroup of G such
that ' N U is Zariski dense in U. Then there exists an element h € G such that
(1) hUR™! =V} for some 6 C A,
(2) wohUh~Ywy' N hTh~! is Zariski dense in wohUh~'wy!

Proof: By Lemma 3.4, there exists an element v € T" such that B; C N(U) and
By C yN(U)~! for some pair By, B of opposite minimal parabolic subgroups.
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Therefore U C Ry(B;) and YUy~ C R,(Bz). Since R,(B1) and R,(B:) are
opposite maximal horospherical subgroups, there exists h € G(R) such that

hR,(B1)h ' =Vy and hRy.(B)h™' =1V, .

Therefore hUA™! C Vy; hence hRUh™ C Vj for some 6 C gA, and hyUy~ 1A~ C
V, . Since kyUy A= NATh™! = hy(UNT)y~'h~" and UNT is Zariski dense
in U by the assumption, we have that hyU~vy~'h=' N h[h™! is Zariski dense in
hyU~v~'h~1. Tt only remains to show that hyU~y~*h~! = wohUh~twy . Since
weVpuwg ' = Vg, we have wy 'hyUy~th~lwy C V. Observe that AN(U)h™! and
wy hyN(U)y~1h~lwy are two conjugate parabolic subgroups which contain the
same minimal parabolic subgroup Py. So AN(U)h~ = wy *hyN(U)y 1k~ wy
(cf. [B-T, 4.3]). Since the normalizer of a parabolic subgroup is the parabolic sub-
group itself, there exists an element n € N(U) such that hn = wy 'h7y. Therefore
hyU~~1h~! = wohUh™wy!, proving the proposition. 1

3.7. CoroLLARY: Let G, T, U be as above and U be conjugate to Vy for some
8 C rA. Then for some h € G(R), hTh™! intersects both Vy and Vi(—o) Zariski
densely.

4. Proof of Proposition 1.5

4.1. PROPOSITION: Let G be a connected semisimple algebraic R-group and I'
a discrete Zariski dense subgroup of G(R). Suppose that there exists a horo-
spherical R-subgroup U of G such that T' N U is Zariski dense in U. Then there
exists a reflexive horospherical R-subgroup V of G such that U C V and ' NV
is Zariski dense in V.

Proof: Note that a maximal horospherical R-subgroup of G is always reflexive
and the dimensions of the maximal horospherical R-subgroups of G are all equal.
Therefore by induction on the dimension of U, it is enough to prove that if U is
not reflexive, then there exists a horospherical R-subgroup V such that V NI is
Zariski dense in V and U C V.

We use the notation g®, gA etc. from section 3.1. By Corollary 3.7, there is
no loss of generality in assuming that U = Vj for some 8 C rA and Vi(_o) NCis
Zariski dense in Vi(_())' Let U’ = Vi(_o)‘ Note that wolUwy 1 = U’. Suppose that U
is not reflexive. Then by Lemma 3.2, N(U)NU’ is not trivial. By Lemma 3.3, we
have that [N(U), N({U)|nU’' = N(U) N U'. Therefore it follows from Corollary
2.4 that N(U)(R) NU'(R) is I'-compact; hence N(U)NU'NT is Zariski dense in
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N{U)NU’'. Hence VNT is Zariski dense in V where V = (N({U)NU'yx U. To
finish the proof of the proposition, it remains to show that V is a horospherical
R-subgroup of G, which we will do in Proposition 4.2. |

Note that for U = Vj for 8 C g4, we have
(N(U) NwoUuwg ) x U = (P N Vy)) % Vo

4.2. PROPOSITION: Let U = Vp. Then (N(U)NwoUwg ') x U is a horospherical
R-subgroup of G.

Proof: Note that N(Vg) = Py. Let L = PN P, and M = [L,L]. Then M
is a connected semisimple algebraic R-group and M = GE‘Q], i.e., the subgroup
generated by U,, a € j7'[0]. It is well known that SN M is a maximal R-split
torus of M and the restriction of [] to SN M gives all of (S N M, M), which
will be denoted by ®as. The root system ®js has the induced ordering from &.
Since woUwy ! = Vi(_e) = Uga-—[i(s)) and the set g®~ — [i(f)] is unipotent,
we have that N(U) N onwO“l =Mn onwO_1 = U@;J—[oni(e)] by Lemma 3.3.
It follows that M N welUwgy ! is a horospherical R-subgroup of M. Note that
Vo N M is a maximal horospherical R-subgroup of M. There exists an element
w € N(SN M)N M such that w(Vp N M)w=! = V3~ N M (cf. section 3.1). Let
J be the opposition involution of @y such that w(j(a)) = —a for all a € .
Then

wUs= _torie) X Unet—(o10 ™" = wlg= _gri06) 0" X Upart—[g]

since w normalizes U.
Since w sends &}, — [#N3(9)] to ®&F, — [7(8Ni(H))],

wWUg= _tonion@ " X Us+ (o] = Ust _(iconicey)) X Uset—lo] = Ua+—(j(oni(e)))-

So U’U<1>;4—[ani(9)] X UR@+_[9]w‘l is the horospherical R-subgroup Vj(sn(s))-
This proves that (M NweUwy 1) x U is a horospherical R-subgroup of G. 1

4.3. Proof of Proposition 1.5: By Proposition 4.1, we may assume that U is
reflexive. By Corollary 3.5, there exists v € T' such that U and yU~vy™! are
opposite. Since YUy NT = v(U NT)y~1, it suffices to set U3 = U and U, =
yU~~! to prove the proposition. |
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