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A B S T R A C T  

We showed in [Oh] that for a simple real Lie group G with real rank at 
least 2, if a discrete subgroup F of G contains lattices in two opposite 
horospherical subgroups, then F must be a non-uniform arithmetic lattice 
in G, under some additional assumptions on the horospherical subgroups. 
Somewhat surprisingly, a similar result is true even if we only assume that 
F contains a lattice in one horospherical subgroup, provided F is Zariski 
dense in G. 

1. I n t r o d u c t i o n  

Let G be a connected semisimple algebraic R-group. A un ipo ten t  subgroup U of 

G is called a h o r o s p h e r i c a l  R-subgroup if U is the un ipo ten t  radical  of some 

proper  parabol ic  R-subgroup of G. 

The  ma in  theorem in this paper  is as follows: 

1.1. THEOREM: Let G be a connected absolutely simple R-split algebraic group 

with rank at  least 2. Suppose tha t  G is not of type A2. Let F be a discrete 

Zariski dense subgroup of G(R). Then F is a non-uniform arithmetic lattice in 

G(R) if  and o n l y / f  there exists a horospherical R-subgroup U of G such that 

F N U is Zariski dense in U. 

1.2. COROLLARY: Let G be as in Theorem 1.1 and U a horospherical R-subgroup 

of  G. 
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(1) Let X be any subset of U(~) such that the subgroup generated by the 

elements of X is Zariski dense in U. 

(2) Let Y be any subset of G(~) such that the subgroup Fxuv  generated by 

the elements of X U Y is Zariski dense. 

Then either F x u v  is a non-uniform arithmetic lattice in G(~) or F xuv  is not 

discrete. 

The proof of Theorem 1.1 is based on some results obtained in [Oh], which we 

will recall in the following. 

Two parabolic subgroups are called oppos i te  if their intersection is a common 

Levi subgroup in both of them. Two horospherical subgroups are called oppos i t e  

if they are the unipotent radicals of opposite parabolic subgroups. 

1.3. THEOREM (cf. [Oh, Theorem 0.2]): Let G be a connected absolutely sim- 

ple N-algebraic group with real rank at least 2 and U1, U2 a pair of opposite 

horospherical I~-subgroups of G. Let F1 and F2 be lattices in UI (I~) and U2(N), 

respectively. Suppose that G is split over N and that if G is of type A2, then 

U1 is not the unipotent radical of a Borel subgroup. Then F1 and F2 generate a 

discrete subgroup if and only if there exists a Q-form of G with respect to which 

U1 and U2 are defined overQ and Fi C Ui(Z) for each i = 1,2. Furthermore, the 

discrete subgroup generated by F1 and F2 is a subgroup of finite index in G(Z). 

In [Oh, Theorem 0.2], we proved that if the subgroups F1 and F2 as in the state- 

ment of Theorem 1.3 generate a discrete subgroup, then there exists a Q-form of 

G such that  the subgroup PFl,F2 generated by F1 and F2 is commensurable to the 

subgroup G(Z). We deduce Theorem 1.3 from this theorem; since G is absolutely 

simple and hence the center of G is trivial, we can assume that  G C SLN(C) by 

considering the adjoint representation of G. Since FFI,F2 is an arithmetic sub- 
group, it is not difficult to see that there exists a FFl,F2-invariant lattice L in 

QN (cf. [P-R, Proposition 4.2]); hence FFI,F2 C G L = {g E GIg(L)  C L}. Now 

by applying the automorphism of SLN (C) that changes the standard basis to a 

basis of L, we can change the Z-form of G so that G(Z) = G L, proving Theorem 

1.3. 

The following corollary follows from the above Theorem 1.3 and Theorem 7.1.1 

in [Mal. 

1.4. COROLLARY: Let G be a connected absolutely simple R-split algebraic 

group with rank at  least 2 and F a discrete subgroup of G(N). Suppose that G 

is not of type A2. Then F is a non-uniform lattice in G(R) if and only if there 
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exists a pair U1, U2 of opposite horospherical R-subgroups of G such that F n Ui 

is Zariski dense in Ui for each i -- 1, 2. 

Using Corollary 1.4, Theorem 1.1 is then a consequence of the following 

proposition. 

1.5. PROPOSITION: Let G be a connected semisimple R-algebraic group and F 

a discrete Zariski dense subgroup of G(]R). Suppose that there exists a horo- 

spherical R-subgroup U of G such that F N U is Zariski dense in U. Then there 

exists a pair U1, U2 of opposite horospherical R-subgroups of G such that U C U1 

and F n Ui is Zariski dense in Ui for each i = 1, 2. 

For simplicity, Theorem 1.3 is stated here only for JR-split groups but we proved 

it in much greater generality (see [Oh, Theorem 0.3]). All the above theorems 

are valid for all situations in which Theorem 0.3 in [Oh] holds. 

Remark: Theorem 1.3 was conjectured by G. Margulis in greater generality 

(see [Oh1] for the full statement of the conjecture). 

2. U n i p o t e n t  s u b g r o u p s  of  F 

2.1. Definition: Let H be a locally compact topological group, and D and 

M closed subgroups of H. We say that D is M- p r o p e r  if the natural map 

D/(D N M) --+ H / M  is proper, and M - c o m p a c t  if the factor space D/(D N M) 

is compact. 

2.2. LEMMA [MR, Lemma 2.1.4]: If M is a discrete subgroup of H, D1 is 

M-proper and D2 is M-compact, then D1 n D2 is M-compact. 

2.3. Let G be a connected semisimple algebraic R-group. For a subgroup F of 

G(]R), we denote by N(F)  the normalizer of F in G, by [F, F] the commutator 

subgroup of F,  and by S(F) the subgroup [N(F), N(F)] n G(R). The notation 

F denotes the Zariski closure of F.  

The following theorem in [Ma], which was originally stated only for the case 

where P is a lattice, holds for arbitrary discrete subgroups, as we can see from 

the proof given in [Ma]. 

THEOREM [MR, Lemma 5.2.2]: Let F be a discrete subgroup of G(R) and F a 

unipotent subgroup o f f  such that F n F = F. Then S(F) is F-proper. 

2.4. COROLLARY: Let G be a connected semisimple algebraic ]R-group and F 

a discrete subgroup of G(R). Let F1 and F2 be unipotent subgroups of F such 
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that Fi M F = Fi for each i = 1, 2. Then S(F1) M F2 is F-compact. In particular, 

S(F1) N F2 (1F is a co-compact lattice in S(F1) M F2. 

Proo~ By Theorem 2.3, S(F1) is F-proper. Since a Zariski dense discrete sub- 

group of a unipotent algebraic group is a co-compact lattice, F2 M G(]R) is F- 

compact. Therefore, by Lemma 2.2, S(F1) M F2 is F-compact. | 

Note that the above corollary gives a way of obtaining a subgroup of F2 that 

intersects F as a lattice when S ( ~ )  M ~ is non-trivial. 

3. Horospherical subgroups and their intersections with F 

3.1. Let G be a connected semisimple algebraic ]R-group, S a maximal l~-split 

torus of G and T a maximal ]R-torus containing S. Denote by Rff~ = r G) 

(resp. r -- r G)) the set of roots of G with respect to S (resp. T). We 

choose compatible orderings on �9 and Rr and let RA be the simple roots of n~ 

with respect to this ordering. Let j: r -+ R~ U {0} be the map induced by the 

restriction to S. 
For each b E ~(T, G), we denote by Ub the unique one parameter root subgroup 

associated with b. For 0 C RA, [O] denotes the Z-linear combinations of elements 

of 0 which are roots in ~ .  A subset r C R~ is called closed if a, b E ffJ and 

a -{- b E R~ imply a + b ~ 01. If ~I, is closed, then we denote by G~ the subgroup 

generated by T and the subgroups Ua, a E j-1 (ffJU {0}), and by G}, the subgroup 

generated by the subgroups Ua, a E j-l(kg). If G~ is unipotent, then it will also 

be denoted by U~ and the set ffJ in this case will be called unipotent. 
For 0 C RA, we define the following closed subsets of R~: 

~o = [e] u ~ , ~ + ,  r e -  = [e] u ~ - ,  ~'o = R' I  ' +  - [el, ~ 'e -  = R ' I ' -  - [e]. 

For the sake of simplicity, we shall denote by Pe, 1~ Vo and V0- the subgroups 

G ~ ,  G ~ - ,  U~e and U~e-, respectively. 

We recall some well-known facts about parabolic subgroups and horospherical 

subgroups (cf. [B-T]). Any parabolic (resp. horospherical) R-subgroup of G is 

conjugate to P8 (resp. Ve) for some 0 C RA. Any pair of opposite parabolic 

(resp. horospherical) ]R-subgroups is conjugate to the pair Po, Ps-  (resp. Vo, 

V0-) for some ~ C ~A. Note that P~ is a minimalparabolic R-subgroup and V 0 is 

a maximM horospherical R-subgroup. Any parabolic R-subgroup containing PO 
is of the form P0 for some ~ C RA and any horospherical R-subgroup contained 

in V0 is of the form Va for some 0 C RA. 
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Let ~W = N(S)/C(S) be the relative Weyl group where C(S) denotes the 

centralizer of S in G. For any w E RW and any subgroup H of G normalized by 

C(S), we denote by wHw -I the subgroup nwHnw I where nw is a representative 

of w in N(S). We fix wo E RW such that woVr I -- V~. Then wo takes (I)+ 

into (I)- and there exists an involution i of (I) such that wo(i(a)) = -a for all 

a E (1). We call i the opposition involution of (1) (cf. [B-T, 2.1]). We have that 

woPowo I = Pi(-0) a n d  woWozoo 1 = Vi~o). If i(O) ~- O, then 19o (resp. Vo) is called 

ref lexive and so are all the elements in the eonjugacy class of Po (resp. Vo). 

Note that  a parabolic subgroup P is reflexive if and only if its conjugacy class 

contains a parabolic subgroup opposite to P. 

It is not difficult to see that  the following lemma holds. 

3.2. LEMMA: The followings are ali equivalent. 

(1) 1/o is reflexive; 

(2) i(o) = o; 
(3) Vo and woVowo 1 are opposite; 

(4) N(Vo) A woVowo 1 is trivial. 

3.3. LEMMA [B-T, Proposition 3.22]: If  ~b and r are two closed subsets of ~ 

and ~b is unipotent, then Ur AGr = Ur n G~ : Ucnr 

3.4. LEMMA [B-T, Lemma 4.12]: Let G be a connected semisimple algebraic R- 

group and P1, P2 two parabolic subgroups of G. Then the set M of all elements 

g E G such that P1 and gP2g -1 contain opposite minimal parabolic subgroups is 

Zariski dense and open. 

3.5. COROLLARY: Let G be a connected semisimple JR-algebraic group and P a 

reflexive parabolic R-subgroup of G. Then the set M of the elements g E G such 

that P and gpg-1  are opposite is Zariski dense and open. 

Proo~ This follows from Lemma 3.4 and Proposition 4.10 in [B-T], which says 
that  two conjugate parabolic subgroups are opposite if they contain opposite 

minimal parabolic subgroups. | 

3.6. PROPOSITION: Let G be a connected semisimple algebraic JR-group, F a 

Zariski dense subgroup of G(R) and U a horospherical JR-subgroup of G such 

that F N U is Zariski dense in U. Then there exists an element h E G such that 

(1) hUh -1 = Vo for some 0 c RA, 

(2) w o h U h - l w o  1 fq hFh -1 is Zariski dense in w o h U h - l w o  1. 

Proof: By Lemma 3.4, there exists an element 7 E F such that  B1 C N(U)  and 

B2 C 7N(U)'y -1 for some pair B1, B2 of opposite minimal parabolic subgroups. 
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Therefore U C R~(B1) and 7U7 -~ c R~(B2). Since R~(B1) and R~(B2) are 

opposite maximal horospherical subgroups, there exists h E G(R) such that 

hR~(B1)h -1 = V 0 and hR~(B2)h -1 -- V O. 

Therefore hUh -1 C V0; hence hUh -1 c V8 for some 0 C RA, and h'~U~/-lh -1 C 

V0-. Since h~/U~-lh -1 N hFh -1 = h~/(U N F ) ? - l h  -1 and U N F is Zariski dense 

in U by the assumption, we have that hTUT- lh  -1 n hFh -1 is Zariski dense in 

h~/U~-lh -1. It only remains to show that h~/UT-lh -1 = w o h U h - l w o  1. Since 

woV~wo 1 = V~-, we have woI h 'yU~- lh- lwo C I1o. Observe that hN(U)h  -1 and 

Wo 1 h~N(U)y -1  h - lwo  are two conjugate parabolic subgroups which contain the 

same minimal parabolic subgroup P0. So hN(U)h  -1 = w o l h T N ( U ) 7 - 1 h - l w o  

(cf. [B-T, 4.3]). Since the normalizer of a parabolic subgroup is the parabolic sub- 

group itself, there exists an element n E N(U) such that hn = wo lh% Therefore 

h~fU'7-1h -1 =- w o h U h - l w o  1, proving the proposition. I 

3.7. COROLLARY: Let G, F, U be as above and U be conjugate to Ve for some 

0 C ~A. Then for some h E G(R), hFh -1 intersects both Ve and V~e) Zariski 

densely. 

4. P r o o f  o f  P r o p o s i t i o n  1.5 

4.1. PROPOSITION: Let G be a connected semisimple algebraic R-group and F 

a discrete Zariski dense subgroup oE G(R). Suppose that there exists a horo- 

spherical ]~-subgroup U of G such that F N U is Zariski dense in U. Then there 

exists a reflexive horospherical R-subgroup V of G such that U C V and F N V 

is Zariski dense in V.  

Proof: Note that  a maximal horospherical II~-subgroup of G is always reflexive 

and the dimensions of the maximal horospherical I~-subgroups of G are all equal. 

Therefore by induction on the dimension of U, it is enough to prove that  if U is 

not reflexive, then there exists a horospherical R-subgroup V such that V n F is 

Zariski dense in V and U ~ V. 

We use the notation R(I), RA etc. from section 3.1. By Corollary 3.7, there is 

no loss of generality in assuming that U = V0 for some 0 C RA and Vi(e) n F is 

Zariski dense in V~(0). Let V' = V~-e). Note that wogwo  1 = V'. Suppose that  U 

is not reflexive. Then by Lemma 3.2, N(U)NU '  is not trivial. By Lemma 3.3, we 

have that  [N(U), N(U)] N U' = N(U) n U'. Therefore it follows from Corollary 

2.4 that  N(U)(R)  n U'(~) is F-compact; hence N ( U ) N  U'A F is Zariski dense in 
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N(U) n U'. Hence V N F is Zariski dense in V where V = (N(U) N U') ~< U. To 

finish the proof of the proposition, it remains to show that  V is a horospherical 

R-subgroup of G, which we will do in Proposition 4.2. I 

Note that  for U = Ve for 0 C RA, we have 

(N(U) NwoUwo 1) ~< U = (Po N Vi~o) ) ~< Vo. 

4.2. PROPOSITION: Let U = Vo. Then (N(U) nwoUwo 1) ~< U is a horospherical 

R-subgroup of G. 

Proof: Note that  N(Vo) -- Po. Let L = PoNP~- and M = [L,L]. Then M 

is a connected semisimple algebraic R-group and M = G[*0] , i.e., the subgroup 

generated by Ua, a C j-l[O]. It  is well known that  S N M is a maximal R-split 

torus of M and the restriction of [0] to S N M gives all of r  N M, M),  which 

will be denoted by q)M. The root system ~M has the induced ordering from r 

Since woUwo 1 = V~(o) = U~r and the set R ~ -  - [i(0)] is unipotent,  

we have that  N(U) n w o U w o  1 = M N woUwo 1 = U~;_[oni(o)] by Lemma 3.3. 

It  follows that  M n woUwo 1 is a horospherical R-subgroup of M. Note tha t  

V0 N M is a maximal horospherical R-subgroup of M. There exists an element 

w c N ( S  N M) n M such that  w(V O n M)w -1 = V O- n M (cf. section 3.1). Let 

j be the opposition involution of OM such that  w(j(a)) = - a  for all a E ~M. 

Then 

wUcb M_[OAi(O)] t~ URr -1 -.~ WU~ M_[OAi(o)]W-1 ~< UR~b+_[0] 

since w normalizes U. 

Since w sends (I) M - [t9 D i(0)] to ~+M -- [J(O N i(0))], 

wUr -1 ~< U~+-[0] = U~+_[j(on~(o)) ] ~< U~r = UR~+-[j(on~(o)) ]. 

So WU~M_[Oni(O)] ~< U~+_[o]W -1 is the horospherical A-subgroup Vj(0ni(0)). 

This proves that  (M N woUwo 1) ~< U is a horospherical R-subgroup of G. | 

4.3. Proof of Proposition 1.5: By Proposition 4.1, we may assume that  U is 

reflexive. By Corollary 3.5, there exists 7 E F such that  U and 7U7 -1 are 

opposite. Since ~,U~ -1 N F = 7(U N F)7 -1, it suffices to set U1 = U and U2 = 

7U7 -1 to prove the proposition. | 
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